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Introduction

Graph neural networks are often prone to over-squashing in tasks that require propagating in-
formation over long distances. However, the prevalence of over-squashing for a given task has
been shown to vary across different GNN architectures [I]. In the case of Graph Attention Net-
works, each node is able to use attention-based weighting to filter out incoming messages contain-
ing irrelevant information, which helps mitigate information bottlenecks. However, the attention
mechanism does not entirely eliminate the problem of over-squashing in deep models. Most so-
lutions to over-squashing rely on rewiring the input graph to avoid information bottlenecks. In
this study, we investigate the performance of GATs with respect to various rewiring techniques.
Specifically, we aim to compare the effectiveness of several popular rewiring-based solutions to over-
squashing and identify those that best complement the attention mechanism. The code is available
at https://github.com/julballa/gat_rewiring.

Methodology
We compare the performance of the base GAT model against the following graph rewiring methods:

e Fully Adjacent layer (+FA): In the original paper which identified over-squashing as a
standalone phenomenon, Alon and Yahav proposed to replace the last layer in an already
extensively tuned model with a fully connected layer [I]. Critically, this method is also used
to detect the presence of over-squashing; an increase in model performance upon connecting
all of the nodes in the last layer indicates that the original model struggles to propagate
information between distance nodes.

e Virtual Node: Rather than connecting all nodes to each other, Gilmer et al. introduced
a “virtual node” which all other nodes could read from and write to [2]. The virtual node
has its own weights and update function through which it aggregates global information. We
follow the implementation in the Open Graph Benchmark graph-level GCN example, where
the virtual node’s update function is given by a 2-layer MLP [3].

e Expander Graph Propagation (EGP): A recent paper by Deac et al. suggests a new
rewiring approach based on propagating messages over expander graphs [4]. These graphs
have a low diameter and a large Cheeger constant (any 2 subsets of vertices have many
links between them, thus avoiding bottlenecks), making them a good candidate for message
propagation. The expander graph is constructed as GC¥() ¢ Cay(SL (2,Z,) ; Sn), where the
special linear group SL (2,7Z,) denotes the group of 2 x 2 matrices with determinant 1 and
entries that are integers modulo n which is generated by the symmetric group S,,. For a given
input graph with |V| vertices, the corresponding Cayley graph size is calculated as
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We pre-generate the required Cayley graphs for our experiments using the SageMathCell
web interface [5]. Since n may not always align with |V|, we sample the first |V| nodes in
the Cayley graph to obtain the new adjacency matrix. The procedure for expander graph
propagation is then given by alternating between GAT convolution on the input graph for
odd layers and on the expander graph for even layers.


https://github.com/julballa/gat_rewiring

e All FA: To provide more insight into a learning task’s reliance on graph topology, we evaluate
the performance of a GAT model in which each layer is fully adjacent. In tasks where
the graph’s structure is highly relevant to the prediction, we expect to see much poorer
performance from the AIIFA model since it has no access to any topological information.

Each method is evaluated on two graph-level classification datasets. We report the training accuracy
to detect over-squashing by measuring the model’s ability to fit the input data, as well as the test
accuracy to measure the model’s ability to generalize.

Datasets

The above approaches are evaluated on the MUTAG and ENZYMES datasets from the TUDataset
[6]. These datasets have been shown to require long-range interactions between nodes and have
been used as benchmarks for studying oversquashing [7]. MUTAG yields a binary classifcation
task for predicting the mutagencity of molecular compounds. The task in ENZYMES is to classify
protein structures across 6 different enzyme classes.

Experiments

Our baseline GAT model consists of single-head attention with ReLLU activations. The node repre-
sentations from the convolutional layers are aggregated via a global mean pooling operation before
being fed into a final linear layer. For the virtual node method, we use a 2-layer MLP for the
virtual node’s update function after pooling the other node representations via global mean pool-
ing. To speed up the training process, we employ graph mini-batching and early stopping such
that the training terminates once the training accuracy decreases for a set number of epochs. For
each dataset, we use the same hyperparameters (shown in Table [1)) across all models to evaluate
the effects of the rewiring methods irrespective of parameter tuning. Hyperparameters are chosen
based on the best-tuned GNN models for similar experiments in literature [7]. We perform 10-fold
cross-validation by randomly splitting the data into 10 disjoint training and test sets. The mean
and standard error for the classification accuracy is recorded in Table

Table 1: Shared hyperparameters for each dataset.

Hyperparameter MUTAG ENZYMES
num_layers 4 4
hidden_dimension 64 64
dropout 0.3 0.3
batch_size 32 32
epochs 500 500
patience ) )
learning_rate 0.001 0.001

Table 2: Classification accuracy with standard error (%).

Dataset GAT +FA Virtual Node EGP AlIFA

MUTAG (Train) 87.29+0.10 &9.84 +0.06 90.84 £0.12 88.06 +£0.08 89.72 4+ 0.01
MUTAG (Test) 76.78 £2.21 79.47 £1.98 78.42 +2.12 79.94 +£2.05 79.41 £1.96
ENZYMES (Train) 43.07 0.0 42.14+0.01 70.63 £ 0.41 47.84 +£0.01 37.30+0.04
ENZYMEs (Test) 32.744+0.09 31.534+0.11 41.59 £ 0.70 35.72+0.12 28.71 +0.98




Results

The improvement in training accuracy with the use of the FA layer in MUTAG indicates the
presence of over-squashing. However, the AlIFA approach also leads to a similar improvement,
which suggests that graph topology is not very important in this benchmark. This is also likely
why both +FA and AlIFA outperform expander graph propagation, where the rewiring is much
sparser. In both datasets, the virtual node rewiring was most effective in improving the training
accuracy, and hence in mitigating over-squashing. Since MUTAG doesn’t heavily rely on structural
information, this may be a result of the additional expressivity offered by the MLP that computes
the virtual node embedding. In the ENZYMES task, the training accuracy decreases with the
introduction of a FA layer, which may suggest that the model is not in fact suffering from over-
squashing. Given that the training accuracy for the ordinary GAT is quite low, it is possible
that the base model is not maximally tuned and a more extensive hyperparameter search may
be necessary. The decrease in training accuracy for AIIFA also indicates that graph topology is
important to the classification. The sparsity of the propagation graphs in EGP may therefore be
the basis for the accuracy increase over the base GAT, +FA, and AlIFA models. Furthermore, the
virtual node approach sees a drastic improvement in performance which likely results from each
layer both preserving structural information and utilizing global information.

Discussion

The superior performance of the virtual node approach indicates that for tasks that rely on the
graph structure, GATs benefit most from rewirings that preserve topological information as much
as possible. However, this claim can only be validated through a much more rigorous analysis on a
wider pool of datasets. One major limitation of this study is the lack of a graph classification dataset
that both suffers from over-squashing and relies heavily on the relational structure; ENZYMES
appears to be missing the former, and MUTAG is missing the latter. The study would be better
supplemented by a synthetic dataset where we could directly control both factors. One such dataset
is the TreeNeighborsMatch benchmark designed by Alon and Yahav [I]. A disadvantage of using
this benchmark is the size of the dataset required to observe the phenomenon of over-squashing:
the training accuracy of GATs only starts decreasing at a tree depth of 5 (which calls for a model
with 6 layers). The dataset samples 32,000 trees at this depth for training, leading to very long
training times and high computational costs. The observation that it takes more layers for GAT
performance to suffer from over-squashing as compared to other GNN architectures [I] is indicative
of a more fundamental issue with the motivation behind this study. Since GATs are inherently more
robust to information bottlenecks, a benchmarking of over-squashing solutions is better motivated
for architectures like GCN or GIN.

Future Work

Given the positive results of rewiring methods that preserve structural information, such as the
virtual node approach, it would be interesting to test whether similar results can be seen from over-
squashing solutions that preserve topological statistics despite completely changing the prorogation
graph. Candidate methods include Stochastic Discrete Ricci Flow [§] or DropEdge [9]. Furthermore,
a future study could try implementing attention-based aggregation of node representations at the
virtual node, which may lead an improvement in model performance over mean pooling where
all nodes have the same weight. Finally, it would be interesting to compare GATs with rewired
shortcuts to Graph Transformers [10], which are assumed to be fundamentally more powerful since
they are not limited by local information.
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